Exponential locality preserving projections for small sample size problem

نویسندگان

  • Sujing Wang
  • Hui-Ling Chen
  • Xujun Peng
  • Chunguang Zhou
چکیده

Locality Preserving Projections (LPP) is a widely used manifold reduced dimensionality technique. However, it suffers from two problems: (1) Small Sample Size problem; (2)the performance is sensitive to the neighborhood size k. In order to address these problems, we propose an Exponential Locality Preserving Projections (ELPP) by introducing the matrix exponential in this paper. ELPP avoids the singular of the matrices and obtains more valuable information for LPP. The experiments are conducted on three public face databases, ORL, Yale and Georgia Tech. And the results show that the performances of ELPP is better than those of LPP and the state-of-the-art LPP Improved1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scatter-difference discriminant locality preserving projections for palmprint recognition

We develop an improved LPP method called scatter-difference discriminant locality preserving projections (SDLPP) for palmprint recognition. SDLPP has better classification capability which benefits from discriminant information obtained by maximizing the difference of between-class separability and within-class similarity. SDLPP avoids the singularity problem for the high-dimensional data matri...

متن کامل

Fisher Locality Preserving Projections for Face Recognition ?

In this paper, a novel dimensionality reduction method termed Fisher Locality Preserving Projections (FLPP) is proposed by introducing the maximum scatter difference criterion (MSDC) to the objective function of Locality Preserving Projections (LPP). FLPP not only inherits the advantages of LPP which attempts to preserve the local structure, but also makes full use of class information and orth...

متن کامل

The small sample size problem of ICA: A comparative study and analysis

On the small sample size problems such as appearance-based recognition, empirical studies have shown that ICA projections have trivial effect on improving the recognition performance over whitened PCA. However, what causes the ineffectiveness of ICA is still an open question. In this study, we find out that this small sample size problem of ICA is caused by a special distributional phenomenon o...

متن کامل

Discriminant Locality Preserving Projection

In this study, we proposed an improved LPP method named Scatter-Difference Discriminant Locality Preserving Projection (SDDLPP). It considers discriminant information by maximizing the scatter-difference, which makes it have better classification capability. SDDLPP also avoids the singularity problem for the highdimensional data matrix and can be directly applied to the small sample size proble...

متن کامل

A Least-Squares Framework for Component Analysis (Under review for publication in PAMI)

Over the last century, Component Analysis (CA) methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Canonical Correlation Analysis (CCA), Locality Preserving Projections (LPP), and Spectral Clustering (SC) have been extensively used as a feature extraction step for modeling, classification, visualization, and clustering. CA techniques are appealing because man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2011